摘要:The Spongtang ophiolite (Ladakh, NW India) constrains the nature of oceanic lithosphere before Indo-Asia collision and key stages in the development of the Himalayas. We report whole-rock 40Ar/39Ar and in situ zircon 238U–206Pb ages from its crustal and upper and lower mantle sequences. Major and trace elements from harzburgite minerals suggest that the ophiolite formed at a mid-ocean ridge-type spreading centre, whereas published spinel compositions from Spongtang dunites are consistent with a suprasubduction-zone setting. Rare earth element-in-two-pyroxene thermometry for the harzburgite yields 1058 ± 13°C whereas temperature from solvus-based two-pyroxene and olivine–spinel thermometry is lower (to 656°C). The distribution suggests that the mantle section of the ophiolite cooled at rates of 100° Ma−1 or slower. Based on ages, major and trace element geochemistry, and geospeedometric estimates, we model the origin of the Spongtang ophiolite as forming within a mid-ocean ridge-type spreading centre with a spreading rate >2 cm a−1 in the Neotethyan Ocean, possibly from the Late Triassic to Jurassic. By the Early Cretaceous, the ridge experienced increasing influence of subduction beneath the Spongtang oceanic lithosphere owing to a subduction polarity reversal. Based on 238U–206Pb ages of the youngest Cenozoic zircon grain, latest obduction occurred between 64.3 ± 0.8 and 42.4 ± 0.5 Ma, in accordance with 56.7 ± 5.2 Ma whole-rock 40Ar/39Ar ages.