期刊名称:AKCE International Journal of Graphs and Combinatorics
印刷版ISSN:0972-8600
出版年度:2019
卷号:16
期号:2
页码:145-157
DOI:10.1016/j.akcej.2018.01.013
语种:English
出版社:Elsevier
摘要:AbstractFor a graphG, an edge labelingfe:E(G)→{1,2,…,ke}and a vertex labelingfv:V(G)→{0,2,4,…,2kv}are called totalk-labeling, wherek=max{ke,2kv}. The totalk-labeling is called anedge irregular reflexivek-labelingof the graphG, if for every two different edgesxyandx′y′ofG, one haswt(xy)=fv(x)+fe(xy)+fv(y)≠wt(x′y′)=fv(x′)+fe(x′y′)+fv(y′).The minimumkfor which the graphGhas an edge irregular reflexivek-labeling is called thereflexive edge strengthofG.In this paper we determine the exact value of the reflexive edge strength for cycles, Cartesian product of two cycles and for join graphs of the path and cycle with2K2.
关键词:KeywordsEdge irregular reflexive labelingReflexive edge strengthCyclesCartesian product of cycles