首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Variational data assimilation via sparse regularisation
  • 本地全文:下载
  • 作者:Ardeshir M. Ebtehaj ; Milija Zupanski ; Gilad Lerman
  • 期刊名称:Tellus A: Dynamic Meteorology and Oceanography
  • 电子版ISSN:1600-0870
  • 出版年度:2014
  • 卷号:66
  • 页码:1-17
  • DOI:10.3402/tellusa.v66.21789
  • 语种:English
  • 摘要:This paper studies the role of sparse regularisation in a properly chosen basis for variational data assimilation (VDA) problems. Specifically, it focuses on data assimilation of noisy and down-sampled observations while the state variable of interest exhibits sparsity in the real or transform domains. We show that in the presence of sparsity, the l1-norm regularisation produces more accurate and stable solutions than the classic VDA methods. We recast the VDA problem under the l1-norm regularisation into a constrained quadratic programming problem and propose an efficient gradient-based approach, suitable for large-dimensional systems. The proof of concept is examined via assimilation experiments in the wavelet and spectral domain using the linear advection–diffusion equation.
  • 关键词:variational data assimilation; sparsity; l1 regularisation; wavelet; discrete cosine transform
国家哲学社会科学文献中心版权所有