期刊名称:Tellus A: Dynamic Meteorology and Oceanography
电子版ISSN:1600-0870
出版年度:2015
卷号:67
页码:1-17
DOI:10.3402/tellusa.v67.28876
语种:English
摘要:In this article, we introduce a new algorithm called randomised multichannel singular spectrum analysis (RMSSA), which is a generalisation of the traditional multichannel singular spectrum analysis (MSSA) into problems of arbitrarily large dimension. RMSSA consists of (1) a dimension reduction of the original data via random projections, (2) the standard MSSA step and (3) a recovery of the MSSA eigenmodes from the reduced space back to the original space. The RMSSA algorithm is presented in detail and additionally we show how to integrate it with a significance test based on a red noise null-hypothesis by Monte-Carlo simulation. Finally, RMSSA is applied to decompose the 20th century global monthly mean near-surface temperature variability into its low-frequency components. The decomposition of a reanalysis data set and two climate model simulations reveals, for instance, that the 2–6 yr variability centred in the Pacific Ocean is captured by all the data sets with some differences in statistical significance and spatial patterns.
关键词:multichannel singular spectrum analysis; random projection; dimensionality reduction; El Niño southern oscillation; 20th century reanalysis; HadGEM2-ES; MPI-ESM-MR