首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Deep Convolutional Neural Network to Detect the Existence of Geospatial Elements in High-Resolution Aerial Imagery
  • 本地全文:下载
  • 作者:Calimanut-Ionut Cira ; Ramon Alcarria ; Miguel-Ángel Manso-Callejo
  • 期刊名称:Proceedings
  • 电子版ISSN:2504-3900
  • 出版年度:2019
  • 卷号:19
  • 期号:1
  • 页码:17
  • DOI:10.3390/proceedings2019019017
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:This paper tackles the problem of object recognition in high-resolution aerial imagery and addresses the application of Deep Learning techniques to solve a challenge related to detecting the existence of geospatial elements (road network) in the available cartographic support. This challenge is addressed by building a convolutional neural network (CNN) trained to detect roads in high resolution aerial orthophotos divided in tiles (256 × 256 pixels) using manually labelled data.
国家哲学社会科学文献中心版权所有