首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Partitioned Finite Element Method for the Mindlin Plate as a Port-Hamiltonian system
  • 本地全文:下载
  • 作者:Andrea Brugnoli ; Daniel Alazard ; Valérie Pommier-Budinger
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:2
  • 页码:88-95
  • DOI:10.1016/j.ifacol.2019.08.016
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe port-Hamiltonian framework allows for a structured representation and interconnection of distributed parameter systems described by Partial Differential Equations (PDE) from different realms. Here, the Mindlin-Reissner model of a thick plate is presented in a tensorial formulation. Taking into account collocated boundary control and observation gives rise to an infinite-dimensional port-Hamiltonian system (pHs). The Partitioned Finite Element Method (PFEM), already presented in our previous work, allows obtaining a structure-preserving finite-dimensional port-Hamiltonian system, and accounting for boundary control in a straightforward manner. In order to illustrate the flexibility of PFEM, both types of boundary controls can be dealt with: either through forces and momenta, or through kinematic variables. The discrete model is easily implementable by using the FEniCS platform. Computation of eigenfrequencies and vibration modes, together with time-domain simulation results demonstrate the consistency of the proposed approach.
  • 关键词:KeywordsPort-Hamiltonian systems (pHs)Geometric DiscretizationMindlin-Reissner PlatePartitioned Finite Element Method (PFEM)Symplectic Integration
国家哲学社会科学文献中心版权所有