首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:GHI forecasting using Gaussian process regression: kernel study
  • 本地全文:下载
  • 作者:Hanany Tolba ; Nouha Dkhili ; Julien Nou
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:4
  • 页码:455-460
  • DOI:10.1016/j.ifacol.2019.08.252
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, online Gaussian process regression (GPR) is used to model and forecast Global Horizontal Irradiance, at forecast horizons ranging from 30 min to 5 h. It is shown that the covariance function (or kernel) is a key element, deeply influencing forecast results. As a consequence, Gaussian processes with simple kernels and with more complex kernels have been tested and compared to the classic persistence model. Using two datasets of 45 days, it is shown that online GPR models based on quasiperiodic kernels outperform both the persistence model and GPR models based on simple kernels, including the widely used squared exponential kernel.
  • 关键词:KeywordsGlobal horizontal irradianceforecastsGaussian processesnon-parametric regressionmachine learning
国家哲学社会科学文献中心版权所有