首页    期刊浏览 2025年04月17日 星期四
登录注册

文章基本信息

  • 标题:SVM based Intention Inference and Motion Planning at Uncontrolled Intersection
  • 本地全文:下载
  • 作者:Yonghwan Jeong ; Kyongsu Yi ; Sungmin Park
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:8
  • 页码:356-361
  • DOI:10.1016/j.ifacol.2019.08.113
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents a support vector machine (SVM) based intention inference and motion planning algorithm for autonomous driving through uncontrolled intersection. Intention of target vehicles is inferred using SVM with intersection map to predict the future state of targets. A cross point, which has a highest collision probability, is estimated using predicted target state considering prediction uncertainty. Longitudinal acceleration is determined using model predictive control approach considering the predicted cross point. The proposed algorithm is validated via simulation and vehicle tests. The results show the accurate intention inference and human-like motion planning at uncontrolled intersection scenarios.
  • 关键词:KeywordsAutonomous vehiclesMachine learningSupport Vector MachineIntention InferenceMotion PlanningModel Predictive ControlUncontrolled Intersection
国家哲学社会科学文献中心版权所有