首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A predictive control for autonomous vehicles using big data analysis
  • 本地全文:下载
  • 作者:Dániel Fényes ; Balázs Németh ; Péter Gáspar
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:5
  • 页码:191-196
  • DOI:10.1016/j.ifacol.2019.09.031
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractBig data analysis has an increasing importance in the field of the autonomous vehicles. It is related to vehicular networks and individual control. The paper proposes the improvement of a lateral autonomous vehicle control design through big data analysis on the measured signals. Based on the data a decision tree is generated by using the C4.5 and the MetaCost algorithms. It results in the regions of vehicle dynamic states and guarantees the tracking of the autonomous vehicle. The lateral control problem is formed in an MPC (Model Predictive Control) structure, in which the results of the big data analysis are built as constraints. The efficiency of the proposed method is illustrated through a comparative simulation example through a high-fidelity vehicle control software.
  • 关键词:Keywordsautonomous vehicle controlbig data analysisMPC control designdecision tree
国家哲学社会科学文献中心版权所有