首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Visual Wrapper Based Structural Knowledge Discovery from Deep Webpages
  • 本地全文:下载
  • 作者:B. V. V. S. Prasad ; E Srinivas ; M Anusha
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2012
  • 卷号:3
  • 期号:3
  • 页码:863-867
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:Structured knowledge discovery from deep web pages is an important research concept today for more crawler based search engines like Yahoo and Google. Previous data extraction mechanisms have their own inherent limitations, because they are web page programming language dependent precisely HTML dependent. In this paper knowledge discovery from Deep Web is implemented by using visual wrappers which are web page programming language independent approaches. This methodology utilizes the visual feature based wrappers for knowledge discovery include structured data boundary extraction(SDBE) and structured data item extraction (SDIE).Experiments show that our approach have more precision and recall values than earlier systems like DEPTA, IEPAD, Road Runner which are web page programming language dependent approaches.
  • 关键词:Web Mining;Web Data Extraction;Visual Wrappers of Deep Web Pages
国家哲学社会科学文献中心版权所有