期刊名称:International Journal of Computer Science & Technology
印刷版ISSN:2229-4333
电子版ISSN:0976-8491
出版年度:2012
卷号:3
期号:3
页码:735-742
语种:English
出版社:Ayushmaan Technologies
摘要:The major difference between a traditional dissimilarity/similarity measure and ours is that the former uses only a single viewpoint, which is the origin, while the latter utilizes many different viewpoints, which are objects assumed to not be in the same cluster with the two objects being measured. Using multiple viewpoints, more informative assessment of similarity could be achieved. Theoretical analysis and empirical study are conducted to support this claim. All clustering methods have to assume some cluster relationship among the data objects that they are applied on. Similarity between a pair of objects can be defined either explicitly or implicitly. In this paper, we introduce a novel multiviewpoint based similarity measure and two related clustering methods. Two criterion functions for document clustering are proposed based on this new measure. We compare them with several well-known clustering algorithms that use other popular similarity measures on various document collections to verify the advantages of our proposal.