期刊名称:International Journal of Computer Science & Technology
印刷版ISSN:2229-4333
电子版ISSN:0976-8491
出版年度:2012
卷号:3
期号:4
页码:765-768
语种:English
出版社:Ayushmaan Technologies
摘要:Constraint-based mining of sequential patterns is an active research area motivated by many application domains. In practice, the real sequence datasets can present consecutive repetitions of symbols (e.g., DNA sequences, discretized stock market data) that can lead to a very important consumption of resources during the extraction of patterns that can turn even efficient algorithms to become unusable. In this paper, we investigate this issue and point out that the framework developed for constrained frequent-pattern mining does not fit our missions well. An extended framework is developed based on a sequential pattern growth methodology. Our study shows that constraints can be effectively and efficiently pushed deep into sequential pattern mining under this new framework.