首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Load Pattern Analysis of Electricity Customers based on Clustering Algorithm
  • 本地全文:下载
  • 作者:Rupali Meshram ; A. V. Deorankar ; Dr. P. N. Chatur
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2012
  • 卷号:3
  • 期号:4
  • 页码:702-705
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:Electricity load forecasting has been an important risk management and planning tool for electric utilities. Load forecasting is necessary for economic generation of power. Classification of load pattern is an important task for load forecasting of customers and grouping them into classes according to their load characteristics. The different unsupervised clustering algorithms (modified follow-the-leader, k-means, fuzzy k-means and two types of hierarchical clustering) and the Self Organising Map to group together customers having a similar electrical behaviour. In the approach, all load curves of customers are first clustered with the clustering algorithms under a given number of clusters. This paper shows supervised and unsupervised algorithms for classification of electricity customers.
  • 关键词:Classification;Load Pattern Analysis;Clustering;Typical Load Profile
国家哲学社会科学文献中心版权所有