首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:A Comparative Study Between Genetic Algorithm (Ga) and Particle Swarm Optimization (Pso)
  • 本地全文:下载
  • 作者:Prasannajit Dash ; Dr.Maya Nayak ; Deepak Kumar
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2013
  • 卷号:4
  • 期号:2
  • 页码:568-571
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:The most and major popular technique in evolutionary computation research has been the genetic algorithm. Mostly in the Genetic Algorithm(GA), the representation used is a fixed-length bit string. Each position in the string represents a particular feature of an individual and the particular value stored in that corresponding position. Particle Swarm Optimization(PSO) is used to find the optimal fitness value.Simulations are performed over the various standard test data and comparisions are performed with Genetic Algorithm(GA). The experimental results show that proposed PSO based method performs better than the GA method.
  • 关键词:Population;Mutation;Crossover;Genetic Algorithm;Particle Swarm Optimization
国家哲学社会科学文献中心版权所有