首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Detection of Error-Prone Software Modules Using Neural Network
  • 本地全文:下载
  • 作者:U.Ankaiah ; M.R.Narasinga Rao ; V.Ramakrishna
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2013
  • 卷号:4
  • 期号:2
  • 页码:391-394
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:Software complexity metrics of a software module represent a measure of the functional complexity of the module. Identifying software modules based on their software complexity metrics into different error prone categories is a difficult problem in software engineering. This research investigates the applicability of neural network classifiers for identifying fault-prone software modules using a dataset from a software system. A prototype multi layer perceptron neural network classifier using a modified back propagation algorithm is constructed for this purpose. Our preliminary results suggest that a multi layer perceptron network can be used as a tool for identifying fault-prone software modules. Other issue such as representation of software metrics is also discussed.
  • 关键词:Artificial neural network;Software reliability engineering;Error prone software modules;Back propagation algorithm
国家哲学社会科学文献中心版权所有