首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Cascade Participation Index With CSTP Miner
  • 本地全文:下载
  • 作者:G.Vani ; V.Durgaprasadarao ; P.Suresh Babu
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2013
  • 卷号:4
  • 期号:4
  • 页码:412-416
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:The trajectory of any dynamic object is associated with spaceand time. The idea of motion would turn meaningless if time isseparated from space or vice versa. A novel cascade of space andtime was made and named as patiotemporal (ST) in the domain ofdata mining. Partially ordered sets from a given Boolean ST setare considered to mine patterns. A Cascade Participation Index(CPI) is computed through bottleneck analysis over the data set tomeasure user interest. Based on this value and the directed graphrepresentation the fltering of irrelevant Cascade SpatiotemporalPatterns (CSTP) can be done having the miner nested in theprocess. The result has to be extended to real time data sets toprove validation of content.
  • 关键词:Spatiotemporal;Boolean Spatiotemporal Data Set;Partially Ordered Sets;Cascade Participation Index ;Cascade Spatiotemporal Pattern
国家哲学社会科学文献中心版权所有