首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Document Clustering – Efficient Retrieval of Documents Using Keyword Neighbourhood Analysis
  • 本地全文:下载
  • 作者:D. Murali ; Dr. Kahkashan Tabassum ; Dr. A. Damodaram
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2014
  • 卷号:5
  • 期号:3
  • 页码:133-138
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:Retrieval of relevant documents using a set of keywords from a repository for a given context is a challenging task. In this paper, we propose an approach for extending keywords using neighbourhood analysis and architecture for context based document retrieval system. We use the WordNet ontology to identify semantic relationships among various keywords and retrieve the relevant documents from the document repository. We first preproces the documents, which includes two major steps: (i) stop word removal and (ii) stemming process. The outcome of preprocessing provides an indexing for important keywords and their extended set. When a user enters a keyword for document retrival, we present a mechanisim to refine and extend the set of keywords using the ontology. Finally, the extended keywords are matched with index and relevant documents are retrieved. We also present the experimental results and the performance analysis to show the viability of our approach.
  • 关键词:Ontology;Document retrieval;Keyword Refinement;Synset; Neighborhood Analysis.
国家哲学社会科学文献中心版权所有