首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Text Processing Using Fuzzy Relational Clustering
  • 本地全文:下载
  • 作者:J.Sakunthala Devi ; G. Umamaheswara Rao ; B. Kameswara Rao
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2014
  • 卷号:5
  • 期号:4
  • 页码:9-11
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:Fuzzy clustering algorithms let configurations to belong to all clusters with different degrees of membership. A novel fuzzy clustering algorithm that works on relational input data; i.e., data in the arrangement of a square matrix of pairwise resemblances among data objects. The algorithm uses a graph representation of the data and functions in an Expectation-Maximization framework in which the graph centrality of an entity in the graph is interpreted as a possibility. Results of relating the algorithm to sentence clustering errands determine that the algorithm is capable of categorizing coinciding clusters of semantically related sentences and that it is consequently of latent use in a variety of text mining tasks.
  • 关键词:Hierarchical Fuzzy Relational Clustering;Fuzzification Degree; Hard Clustering;Soft Clustering
国家哲学社会科学文献中心版权所有