首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:A Comparative Study on DNA Microarray Gene ExpressionData Having Missing Value Estimation Using KNN Impute and LLS Impute
  • 本地全文:下载
  • 作者:Prasannajit Dash ; Dr. Maya Nayak
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2016
  • 卷号:7
  • 期号:2
  • 页码:123-127
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:Gene expression data very often contain missing values. In regards to this, effective missing value estimation methods are needful though many algorithms for gene expression data analysis require a complete matrix of gene array values. In this paper, local least square imputation and weighted k-nearest neighbors(KNN) imputation are proposed to estimate missing values in the gene expression data. The proposed local least squares(LLS) imputation method gives a target gene which has missing values through a linear combination of very similar genes. The similar genes are selected by k-nearest neighbors or k coherent genes that have bigger values of Pearson Correlation coefficients. In our experiments, the proposed KNN imputation and LLS imputation method applied in e-coli bacteria dataset producing the percentages of missing values in the data.
  • 关键词:Gene Expression;KNNImpute;LLSImpute;Pearson Correlation Coefficients;DNA microarray;L2-norm
国家哲学社会科学文献中心版权所有