首页    期刊浏览 2025年07月08日 星期二
登录注册

文章基本信息

  • 标题:Performance Comparison of Features Reduction Techniques for Intrusion Detection System
  • 本地全文:下载
  • 作者:Rupali Datti ; Shilpa Lakhina
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2012
  • 卷号:3
  • 期号:1
  • 页码:332-335
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:The network traffc data provided for the design of intrusiondetection system always are large with ineffective information,thus we need to remove the worthless information from theoriginal high dimensional database. In this paper, we comparethe performance of two features reduction techniques on NSLKDD dataset, which is now publicly available for the evaluationof Intrusion Detection System. These feature reduction techniquesinclude Principal Component Analysis, Linear DiscriminantAnalysis. After reduction Error Back-Propagation Algorithmis used for classifcation. Our results shows that PCA performsbetter than LDA with small data set and with large data set LDAis superior than PCA.
国家哲学社会科学文献中心版权所有