首页    期刊浏览 2025年12月04日 星期四
登录注册

文章基本信息

  • 标题:Multivariate exploratory data analysis for large databases: An application to modelling firms’ innovation using CIS data
  • 本地全文:下载
  • 作者:Juan C. Bou ; Albert Satorra
  • 期刊名称:BRQ Business Research Quarterly
  • 印刷版ISSN:2340-9436
  • 出版年度:2019
  • 卷号:22
  • 期号:4
  • 页码:275-293
  • DOI:10.1016/j.brq.2018.10.001
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper argues that, when using a large database, organizational researchers would benefit from the use of specific multivariate exploratory data analysis (MEDA) before performing statistical modelling. Issues such as the representativeness of the database across domains (countries or sectors), assessment of confounding among categorical covariates, missing data, dimension reduction to produce performance indicators and/or remedy multicollinearity problems are addressed by specific MEDA. The proposed MEDA is applied to data from theCommunity Innovation Survey(CIS), a large database commonly used to analyse firms’ innovation activities, prior to fitting ordered logit and Tobit regression models. A set of recommended practices involving MEDA are proposed throughout the paper.
  • 关键词:Community Innovation Survey (CIS);MEDA;Innovation;Missing data;MAR and MCAR;Dimension reduction;Multivariate analysis;OLS;ordered logistic and Tobit regression
国家哲学社会科学文献中心版权所有