摘要:Nondestructive inspection (NDI) has immensely contributed to the restoration of historic and artistic works. As one of the most common used NDI methods, active thermography is an easy-to-operate and efficient technique. Principal component thermography (PCT) has been widely used to deal with thermographic data for enhancing the visibility of subsurface defects. Unlike PCT, edge-group sparse PCT introduced herein enforces sparsity of principal component (PC) loadings by considering the spatial connectivity of thermographic image pixels. The feasibility and effectiveness of this method is illustrated by the experimental results of the defect characterization in an ancient marquetry sample with a fir wood support.