摘要:Detection of subsurface defects is undeniably a growing subfield of infrared non-destructive testing (IR-NDT). There are many algorithms used for this purpose, where non-negative matrix factorization (NMF) is considered to be an interesting alternative to principal component analysis (PCA) by having no negative basis in matrix decomposition. Here, an application of Semi non-negative matrix factorization (Semi-NMF) in IR-NDT is presented to determine the subsurface defects of an Aluminum plate specimen through active thermographic method. To benchmark, the defect detection accuracy and computational load of the Semi-NMF approach is compared to state-of-the-art thermography processing approaches such as: principal component thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT), Sparse PCT, Sparse NMF and standard NMF with gradient descend (GD) and non-negative least square (NNLS). The results show 86% accuracy for 27.5s computational time for SemiNMF, which conclusively indicate the promising performance of the approach in the field of IR-NDT.