首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Bayesian Stochastic Frontier Analysis of Economic Growth and Productivity Change in the EU, USA, Japan and Switzerland
  • 本地全文:下载
  • 作者:Kamil Makieła
  • 期刊名称:Central European Journal of Economic Modelling and Econometrics
  • 印刷版ISSN:2080-0886
  • 电子版ISSN:2080-119X
  • 出版年度:2014
  • 期号:4
  • 页码:193-216
  • 语种:English
  • 出版社:Polska Akademia Nauk
  • 摘要:The paper discusses Bayesian productivity analysis of 27 EU Member States, USA, Japan and Switzerland. Bayesian Stochastic Frontier Analysis and a two- stage structural decomposition of output growth are used to trace sources of output growth. This allows us to separate the impacts of capital accumulation, labour growth, technical progress and technical efficiency change on economic development. Since estimates of the growth components are conditioned upon model parameterisation and the underlying assumptions, a number of possible specifications are considered. The best model for decomposing output growth is chosen based on the highest marginal data density, which is calculated using adjusted harmonic mean estimator.
  • 关键词:stochastic frontier analysis;Bayesian inference;productivity analysis;economic growth decomposition
国家哲学社会科学文献中心版权所有