首页    期刊浏览 2025年04月14日 星期一
登录注册

文章基本信息

  • 标题:Sense and Avoid using Hybrid Convolutional and Recurrent Neural Networks
  • 本地全文:下载
  • 作者:Daniel Vidal Navarro ; Chang-Hun Lee ; Antonios Tsourdos
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:12
  • 页码:61-66
  • DOI:10.1016/j.ifacol.2019.11.070
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis work develops a Sense and Avoid strategy based on a deep learning approach to be used by UAVs using only one electro-optical camera to sense the environment. Hybrid Convolutional and Recurrent Neural Networks (CRNN) are used for object detection, classification and tracking whereas an Extended Kalman Filter (EKF) is considered for relative range estimation. Probabilistic conflict detection and geometric avoidance trajectory are considered for the last stage of this technique. The results show that the considered deep learning approach can work faster than other state-of-the-art computer vision methods. They also show that the collision can be successfully avoided considering design parameters that can be adjusted to adapt to different scenarios.
  • 关键词:KeywordsSenseAvoidneural networksdeep learningcomputer visionKalman filterrange estimationUAV
国家哲学社会科学文献中心版权所有