首页    期刊浏览 2024年11月10日 星期日
登录注册

文章基本信息

  • 标题:Generalized Maximum Entropy Estimators: Applications to the Portland Cement Dataset
  • 本地全文:下载
  • 作者:Fikri Akdeniz ; Altan Çabuk ; Hüseyin Güler
  • 期刊名称:Open Statistics & Probability Journal
  • 电子版ISSN:1876-5270
  • 出版年度:2011
  • 卷号:3
  • 期号:1
  • 页码:13-20
  • DOI:10.2174/1876527001103010013
  • 出版社:Bentham open
  • 摘要:

    Consider the linear regression model y = Xβ+ u in the usual notation. In many applications the design matrix X is frequently subject to severe multicollinearity. In this paper an alternative estimation methodology, maximum entropy is given and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We described the generalized maximum entropy (GME) estimator, imposing sign restrictions of parameters and imposing cross parameter restrictions for GME. Mean squared error (mse) values of the estimators are estimated by the bootstrap method. We compared the generalized maximum entropy (GME) estimator, least squares and inequality restricted least squares (IRLS) estimator on the widely analyzed dataset on Portland cement.

国家哲学社会科学文献中心版权所有