期刊名称:AKCE International Journal of Graphs and Combinatorics
印刷版ISSN:0972-8600
出版年度:2019
卷号:16
期号:3
页码:324-331
DOI:10.1016/j.akcej.2018.06.003
语种:English
出版社:Elsevier
摘要:AbstractAnH-factorization of a graphGis a partition of the edge set ofGinto spanning subgraphs (or factors) each of whose components are isomorphic to a graphH.LetGbe the Cartesian product of the cyclesC1,C2,…,Cnwith|Ci|=2ki≥4for eachi.El-Zanati and Eynden proved thatGhas aC-factorization, whereCis a cycle of lengths,if and only ifs=2twith2≤t≤k1+k2+⋯+kn.We extend this result to get factorizations ofGintom-regular,m-connected and bipancyclic subgraphs. We prove that for2≤m<2n,the graphGhas anH-factorization, whereHis anm-regular,m-connected and bipancyclic graph onsvertices, if and only ifmdivides2nands=2twithm≤t≤k1+k2+⋯+kn.