首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Modulus-Based Matrix Splitting Iteration Methods for a Class of Stochastic Linear Complementarity Problem
  • 本地全文:下载
  • 作者:Qianqian Lu ; Chenliang Li
  • 期刊名称:American Journal of Operations Research
  • 印刷版ISSN:2160-8830
  • 电子版ISSN:2160-8849
  • 出版年度:2019
  • 卷号:9
  • 期号:6
  • 页码:245-254
  • DOI:10.4236/ajor.2019.96016
  • 语种:English
  • 出版社:Scientific Research Pub
  • 摘要:For the expected value formulation of stochastic linear complementarity problem, we establish modulus-based matrix splitting iteration methods. The convergence of the new methods is discussed when the coefficient matrix is a positive definite matrix or a positive semi-definite matrix, respectively. The advantages of the new methods are that they can solve the large scale stochastic linear complementarity problem, and spend less computational time. Numerical results show that the new methods are efficient and suitable for solving the large scale problems.
  • 关键词:Stochastic Linear Complementarity ProblemModulus-Based Matrix SplittingExpected Value FormulationPositive Semi-Definite Matrix
国家哲学社会科学文献中心版权所有