首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Restricted Covariance Priors with Applications in Spatial Statistics
  • 本地全文:下载
  • 作者:Theresa R. Smith ; Jon Wakefield ; Adrian Dobra
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2015
  • 卷号:10
  • 期号:4
  • 页码:965-990
  • DOI:10.1214/14-BA927
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We present a Bayesian model for area-level count data that uses Gaussian random effects with a novel type of G-Wishart prior on the inverse variance–covariance matrix. Specifically, we introduce a new distribution called the truncated G-Wishart distribution that has support over precision matrices that lead to positive associations between the random effects of neighboring regions while preserving conditional independence of non-neighboring regions. We describe Markov chain Monte Carlo sampling algorithms for the truncated G-Wishart prior in a disease mapping context and compare our results to Bayesian hierarchical models based on intrinsic autoregression priors. A simulation study illustrates that using the truncated G-Wishart prior improves over the intrinsic autoregressive priors when there are discontinuities in the disease risk surface. The new model is applied to an analysis of cancer incidence data in Washington State.
国家哲学社会科学文献中心版权所有