首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Computational Enhancements to Bayesian Design of Experiments Using Gaussian Processes
  • 本地全文:下载
  • 作者:Brian P. Weaver ; Brian J. Williams ; Christine M. Anderson-Cook
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2016
  • 卷号:11
  • 期号:1
  • 页码:191-213
  • DOI:10.1214/15-BA945
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Bayesian design of experiments is a methodology for incorporating prior information into the design phase of an experiment. Unfortunately, the typical Bayesian approach to designing experiments is both numerically and analytically intractable without additional assumptions or approximations. In this paper, we discuss how Gaussian processes can be used to help alleviate the numerical issues associated with Bayesian design of experiments. We provide an example based on accelerated life tests and compare our results with large-sample methods.
国家哲学社会科学文献中心版权所有