首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Approximate Bayesian Inference for Doubly Robust Estimation
  • 本地全文:下载
  • 作者:Daniel J. Graham ; Emma J. McCoy ; David A. Stephens
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2016
  • 卷号:11
  • 期号:1
  • 页码:47-69
  • DOI:10.1214/14-BA928
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Doubly robust estimators are typically constructed by combining outcome regression and propensity score models to satisfy moment restrictions that ensure consistent estimation of causal quantities provided at least one of the component models is correctly specified. Standard Bayesian methods are difficult to apply because restricted moment models do not imply fully specified likelihood functions. This paper proposes a Bayesian bootstrap approach to derive approximate posterior predictive distributions that are doubly robust for estimation of causal quantities. Simulations show that the approach performs well under various sources of misspecification of the outcome regression or propensity score models. The estimator is applied in a case study of the effect of area deprivation on the incidence of child pedestrian casualties in British cities.
国家哲学社会科学文献中心版权所有