首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Bayesian Quantile Regression for Ordinal Models
  • 本地全文:下载
  • 作者:Mohammad Arshad Rahman
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2016
  • 卷号:11
  • 期号:1
  • 页码:1-24
  • DOI:10.1214/15-BA939
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:The paper introduces a Bayesian estimation method for quantile regression in univariate ordinal models. Two algorithms are presented that utilize the latent variable inferential framework of Albert and Chib (1993) and the normal-exponential mixture representation of the asymmetric Laplace distribution. Estimation utilizes Markov chain Monte Carlo simulation – either Gibbs sampling together with the Metropolis–Hastings algorithm or only Gibbs sampling. The algorithms are employed in two simulation studies and implemented in the analysis of problems in economics (educational attainment) and political economy (public opinion on extending “Bush Tax” cuts). Investigations into model comparison exemplify the practical utility of quantile ordinal models.
国家哲学社会科学文献中心版权所有