摘要:Spatial point pattern data describes locations of events observed over a given domain, with the number of and locations of these events being random. Historically, data analysis for spatial point patterns has focused on rejecting complete spatial randomness and then on fitting a richer model specification. From a Bayesian standpoint, the literature is growing but primarily considers versions of Poisson processes, focusing on specifications for the intensity. However, the Bayesian literature on, e.g., clustering or inhibition processes is limited, primarily attending to model fitting. There is little attention given to full inference and scant with regard to model adequacy or model comparison.