首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Bayesian Inference and Model Assessment for Spatial Point Patterns Using Posterior Predictive Samples
  • 本地全文:下载
  • 作者:Thomas J. Leininger ; Alan E. Gelfand
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2017
  • 卷号:12
  • 期号:1
  • 页码:1-30
  • DOI:10.1214/15-BA985
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Spatial point pattern data describes locations of events observed over a given domain, with the number of and locations of these events being random. Historically, data analysis for spatial point patterns has focused on rejecting complete spatial randomness and then on fitting a richer model specification. From a Bayesian standpoint, the literature is growing but primarily considers versions of Poisson processes, focusing on specifications for the intensity. However, the Bayesian literature on, e.g., clustering or inhibition processes is limited, primarily attending to model fitting. There is little attention given to full inference and scant with regard to model adequacy or model comparison.
国家哲学社会科学文献中心版权所有