首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Adaptive Empirical Bayesian Smoothing Splines
  • 本地全文:下载
  • 作者:Paulo Serra ; Tatyana Krivobokova
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2017
  • 卷号:12
  • 期号:1
  • 页码:219-238
  • DOI:10.1214/16-BA997
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:In this paper we develop and study adaptive empirical Bayesian smoothing splines. These are smoothing splines with both smoothing parameter and penalty order determined via the empirical Bayes method from the marginal likelihood of the model. The selected order and smoothing parameter are used to construct adaptive credible sets with good frequentist coverage for the underlying regression function. We use these credible sets as a proxy to show the superior performance of adaptive empirical Bayesian smoothing splines compared to frequentist smoothing splines.
国家哲学社会科学文献中心版权所有