首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Latent Space Approaches to Community Detection in Dynamic Networks
  • 本地全文:下载
  • 作者:Daniel K. Sewell ; Yuguo Chen
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2017
  • 卷号:12
  • 期号:2
  • 页码:351-377
  • DOI:10.1214/16-BA1000
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Embedding dyadic data into a latent space has long been a popular approach to modeling networks of all kinds. While clustering has been done using this approach for static networks, this paper gives two methods of community detection within dynamic network data, building upon the distance and projection models previously proposed in the literature. Our proposed approaches capture the time-varying aspect of the data, can model directed or undirected edges, inherently incorporate transitivity and account for each actor’s individual propensity to form edges. We provide Bayesian estimation algorithms, and apply these methods to a ranked dynamic friendship network and world export/import data.
国家哲学社会科学文献中心版权所有