首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:A Bayes Interpretation of Stacking for $\mathcal{M}$-Complete and $\mathcal{M}$-Open Settings
  • 本地全文:下载
  • 作者:Tri Le ; Bertrand Clarke
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2017
  • 卷号:12
  • 期号:3
  • 页码:807-829
  • DOI:10.1214/16-BA1023
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:In M-open problems where no true model can be conceptualized, it is common to back off from modeling and merely seek good prediction. Even in M-complete problems, taking a predictive approach can be very useful. Stacking is a model averaging procedure that gives a composite predictor by combining individual predictors from a list of models using weights that optimize a cross-validation criterion. We show that the stacking weights also asymptotically minimize a posterior expected loss. Hence we formally provide a Bayesian justification for cross-validation. Often the weights are constrained to be positive and sum to one. For greater generality, we omit the positivity constraint and relax the ‘sum to one’ constraint.
国家哲学社会科学文献中心版权所有