首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Approximate Bayesian Inference in Semiparametric Copula Models
  • 本地全文:下载
  • 作者:Clara Grazian ; Brunero Liseo
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2017
  • 卷号:12
  • 期号:4
  • 页码:991-1016
  • DOI:10.1214/17-BA1080
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We describe a simple method for making inference on a functional of a multivariate distribution, based on its copula representation. We make use of an approximate Bayesian Monte Carlo algorithm, where the proposed values of the functional of interest are weighted in terms of their Bayesian exponentially tilted empirical likelihood. This method is particularly useful when the “true” likelihood function associated with the working model is too costly to evaluate or when the working model is only partially specified.
国家哲学社会科学文献中心版权所有