首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Deep Learning: A Bayesian Perspective
  • 本地全文:下载
  • 作者:Nicholas G. Polson ; Vadim Sokolov
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2017
  • 卷号:12
  • 期号:4
  • 页码:1275-1304
  • DOI:10.1214/17-BA1082
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Deep learning is a form of machine learning for nonlinear high dimensional pattern matching and prediction. By taking a Bayesian probabilistic perspective, we provide a number of insights into more efficient algorithms for optimisation and hyper-parameter tuning. Traditional high-dimensional data reduction techniques, such as principal component analysis (PCA), partial least squares (PLS), reduced rank regression (RRR), projection pursuit regression (PPR) are all shown to be shallow learners. Their deep learning counterparts exploit multiple deep layers of data reduction which provide predictive performance gains. Stochastic gradient descent (SGD) training optimisation and Dropout (DO) regularization provide estimation and variable selection. Bayesian regularization is central to finding weights and connections in networks to optimize the predictive bias-variance trade-off. To illustrate our methodology, we provide an analysis of international bookings on Airbnb. Finally, we conclude with directions for future research.
国家哲学社会科学文献中心版权所有