首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Improving the Efficiency of Fully Bayesian Optimal Design of Experiments Using Randomised Quasi-Monte Carlo
  • 本地全文:下载
  • 作者:Christopher C. Drovandi ; Minh-Ngoc Tran
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2018
  • 卷号:13
  • 期号:1
  • 页码:139-162
  • DOI:10.1214/16-BA1045
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Optimal experimental design is an important methodology for most ef- ficiently allocating resources in an experiment to best achieve some goal. Bayesian experimental design considers the potential impact that various choices of the controllable variables have on the posterior distribution of the unknowns. Optimal Bayesian design involves maximising an expected utility function, which is an analytically intractable integral over the prior predictive distribution. These integrals are typically estimated via standard Monte Carlo methods. In this paper, we demonstrate that the use of randomised quasi-Monte Carlo can bring significant reductions to the variance of the estimated expected utility. This variance reduction can then lead to a more efficient optimisation algorithm for maximising the expected utility.
  • 关键词:approximate Bayesian computation; evidence; experimental design;importance sampling; mutual information; Laplace approximation; quasi-Monte Carlo.
国家哲学社会科学文献中心版权所有