首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Regularization and Confounding in Linear Regression for Treatment Effect Estimation
  • 本地全文:下载
  • 作者:P. Richard Hahn ; Carlos M. Carvalho ; David Puelz
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2018
  • 卷号:13
  • 期号:1
  • 页码:163-182
  • DOI:10.1214/16-BA1044
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:This paper investigates the use of regularization priors in the context of treatment effect estimation using observational data where the number of control variables is large relative to the number of observations. First, the phenomenon of “regularization-induced confounding” is introduced, which refers to the tendency of regularization priors to adversely bias treatment effect estimates by over-shrinking control variable regression coefficients. Then, a simultaneous regression model is presented which permits regularization priors to be specified in a way that avoids this unintentional “re-confounding”. The new model is illustrated on synthetic and empirical data.
  • 关键词:causal inference; observational data; shrinkage estimation.
国家哲学社会科学文献中心版权所有