首页    期刊浏览 2025年07月13日 星期日
登录注册

文章基本信息

  • 标题:Efficient Model Comparison Techniques for Models Requiring Large Scale Data Augmentation
  • 本地全文:下载
  • 作者:Panayiota Touloupou ; Naif Alzahrani ; Peter Neal
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2018
  • 卷号:13
  • 期号:2
  • 页码:437-459
  • DOI:10.1214/17-BA1057
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Selecting between competing statistical models is a challenging problem especially when the competing models are non-nested. In this paper we offer a simple solution by devising an algorithm which combines MCMC and importance sampling to obtain computationally efficient estimates of the marginal likelihood which can then be used to compare the models. The algorithm is successfully applied to a longitudinal epidemic data set, where calculating the marginal likelihood is made more challenging by the presence of large amounts of missing data. In this context, our importance sampling approach is shown to outperform existing methods for computing the marginal likelihood.
  • 关键词:epidemics; marginal likelihood; model evidence; model selection.
国家哲学社会科学文献中心版权所有