首页    期刊浏览 2025年06月13日 星期五
登录注册

文章基本信息

  • 标题:Modelling and Computation Using NCoRM Mixtures for Density Regression
  • 本地全文:下载
  • 作者:Jim Griffin ; Fabrizio Leisen
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2018
  • 卷号:13
  • 期号:3
  • 页码:897-916
  • DOI:10.1214/17-BA1072
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Normalized compound random measures are flexible nonparametric priors for related distributions. We consider building general nonparametric regression models using normalized compound random measure mixture models. Posterior inference is made using a novel pseudo-marginal Metropolis-Hastings sampler for normalized compound random measure mixture models. The algorithm makes use of a new general approach to the unbiased estimation of Laplace functionals of compound random measures (which includes completely random measures as a special case). The approach is illustrated on problems of density regression.
  • 关键词:dependent random measures; mixture models; multivariate Levy measures; pseudo-marginal samplers; Poisson estimator.
国家哲学社会科学文献中心版权所有