首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Some Aspects of Symmetric Gamma Process Mixtures
  • 本地全文:下载
  • 作者:Zacharie Naulet ; Éric Barat
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2018
  • 卷号:13
  • 期号:3
  • 页码:703-720
  • DOI:10.1214/17-BA1058
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:In this article, we present some specific aspects of symmetric Gamma process mixtures for use in regression models. First we propose a new Gibbs sampler for simulating the posterior. The algorithm is tested on two examples, the mean regression problem with normal errors, and the reconstruction of two dimensional CT images. In a second time, we establish posterior rates of convergence related to the mean regression problem with normal errors. For location-scale and location-modulation mixtures the rates are adaptive over H¨older classes, and in the case of location-modulation mixtures are nearly optimal.
  • 关键词:Bayesian nonparameterics; nonparametric regression; signed random measures.
国家哲学社会科学文献中心版权所有