首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Reciprocal Graphical Models for Integrative Gene Regulatory Network Analysis
  • 本地全文:下载
  • 作者:Yang Ni ; Yuan Ji ; Peter Müller
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2018
  • 卷号:13
  • 期号:4
  • 页码:1095-1110
  • DOI:10.1214/17-BA1087
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Constructing gene regulatory networks is a fundamental task in systems biology. We introduce a Gaussian reciprocal graphical model for inference about gene regulatory relationships by integrating messenger ribonucleic acid (mRNA) gene expression and deoxyribonucleic acid (DNA) level information including copy number and methylation. Data integration allows for inference on the directionality of certain regulatory relationships, which would be otherwise indistinguishable due to Markov equivalence. Efficient inference is developed based on simultaneous equation models. Bayesian model selection techniques are adopted to estimate the graph structure. We illustrate our approach by simulations and application in colon adenocarcinoma pathway analysis.
  • 关键词:simultaneous equation models; Markov equivalence; directed cycles;feedback loop; multimodal genomic data.
国家哲学社会科学文献中心版权所有