首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Sequential Monte Carlo Smoothing with Parameter Estimation
  • 本地全文:下载
  • 作者:Biao Yang ; Jonathan R. Stroud ; Gabriel Huerta
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2018
  • 卷号:13
  • 期号:4
  • 页码:1137-1161
  • DOI:10.1214/17-BA1088
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We propose two new sequential Monte Carlo (SMC) smoothing methods for general state-space models with unknown parameters. The first is a modification of the particle learning and smoothing (PLS) algorithm of Carvalho, Johannes, Lopes, and Polson (2010), with an adjustment in the backward resampling weights. The second, called Refiltering, is a two-stage method that combines sequential parameter learning and particle smoothing algorithms. We illustrate the methods on three benchmark models using simulated data, and apply them to a stochastic volatility model for daily S&P 500 index returns during the financial crisis. We show that both new methods outperform existing SMC approaches, and that Refiltering is competitive with smoothing approaches based on Markov chain Monte Carlo (MCMC) and Particle MCMC.
  • 关键词:Bayesian smoothing; particle filtering; particle learning; particle smoothing; state-space models; stochastic volatility.
国家哲学社会科学文献中心版权所有