首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Bayesian Emulation for Multi-Step Optimization in Decision Problems
  • 本地全文:下载
  • 作者:Kaoru Irie ; Mike West
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2019
  • 卷号:14
  • 期号:1
  • 页码:137-160
  • DOI:10.1214/18-BA1105
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We develop a Bayesian approach to computational solution of multistep optimization problems, highlighted in the example of financial portfolio decisions. The approach involves mapping the technical structure of a decision analysis problem to that of Bayesian inference in a purely synthetic “emulating” statistical model. This provides access to standard posterior analytic, simulation and optimization methods that yield indirect solutions of the decision problem. We develop this in time series portfolio analysis using classes of economically and psychologically relevant multi-step ahead portfolio utility functions. Studies with multivariate currency time series illustrate the approach and show some of the practical utility and benefits of the Bayesian emulation methodology.
  • 关键词:Bayesian forecasting; dynamic dependency network models; marginal and joint modes; multi-step decisions; portfolio decisions; sequential optimization; synthetic model.
国家哲学社会科学文献中心版权所有