首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Joining and Splitting Models with Markov Melding
  • 本地全文:下载
  • 作者:Robert J. B. Goudie ; Anne M. Presanis ; David Lunn
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2019
  • 卷号:14
  • 期号:1
  • 页码:81-109
  • DOI:10.1214/18-BA1104
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Analysing multiple evidence sources is often feasible only via a modular approach, with separate submodels specified for smaller components of the available evidence. Here we introduce a generic framework that enables fully Bayesian analysis in this setting. We propose a generic method for forming a suitable joint model when joining submodels, and a convenient computational algorithm for fitting this joint model in stages, rather than as a single, monolithic model. The approach also enables splitting of large joint models into smaller submodels, allowing inference for the original joint model to be conducted via our multi-stage algorithm. We motivate and demonstrate our approach through two examples: joining components of an evidence synthesis of A/H1N1 influenza, and splitting a large ecology model.
  • 关键词:model integration; Markov combination; Bayesian melding; evidence synthesis.
国家哲学社会科学文献中心版权所有