首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Multiple-Shrinkage Multinomial Probit Models with Applications to Simulating Geographies in Public Use Data
  • 本地全文:下载
  • 作者:Lane F. Burgette ; Jerome P. Reiter
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2013
  • 卷号:8
  • 期号:2
  • 页码:453-478
  • DOI:10.1214/13-BA816
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Multinomial outcomes with many levels can be challenging to model. Information typically accrues slowly with increasing sample size, yet the parameter space expands rapidly with additional covariates. Shrinking all regression parameters towards zero, as often done in models of continuous or binary response variables, is unsatisfactory, since setting parameters equal to zero in multinomial models does not necessarily imply “no effect.” We propose an approach to modeling multinomial outcomes with many levels based on a Bayesian multinomial probit (MNP) model and a multiple shrinkage prior distribution for the regression parameters. The prior distribution encourages the MNP regression parameters to shrink toward a number of learned locations, thereby substantially reducing the dimension of the parameter space. Using simulated data, we compare the predictive performance of this model against two other recently-proposed methods for big multinomial models. The results suggest that the fully Bayesian, multiple shrinkage approach can outperform these other methods. We apply the multiple shrinkage MNP to simulating replacement values for areal identifiers, e.g., census tract indicators, in order to protect data confidentiality in public use datasets.
国家哲学社会科学文献中心版权所有