首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Some Priors for Sparse Regression Modelling
  • 本地全文:下载
  • 作者:Jim E. Griffin ; Philip. J. Brown
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2013
  • 卷号:8
  • 期号:3
  • 页码:691-702
  • DOI:10.1214/13-BA827
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:A wide range of methods, Bayesian and others, tackle regression when there are many variables. In the Bayesian context, the prior is constructed to reflect ideas of variable selection and to encourage appropriate shrinkage. The prior needs to be reasonably robust to different signal to noise structures. Two simple evergreen prior constructions stem from ridge regression on the one hand and g-priors on the other. We seek to embed recent ideas about sparsity of the regression coefficients and robustness into these priors. We also explore the gains that can be expected from these differing approaches.
国家哲学社会科学文献中心版权所有