首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Prediction in $\mathcal{M}$-complete Problems with Limited Sample Size
  • 本地全文:下载
  • 作者:Jennifer Lynn Clarke ; Bertrand Clarke ; Chi-Wai Yu
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2013
  • 卷号:8
  • 期号:3
  • 页码:647-690
  • DOI:10.1214/13-BA826
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We define a new Bayesian predictor called the posterior weighted median (PWM) and compare its performance to several other predictors including the Bayes model average under squared error loss, the Barbieri-Berger median model predictor, the stacking predictor, and the model average predictor based on Akaike’s information criterion. We argue that PWM generally gives better performance than other predictors over a range of M-complete problems. This range is between the M-closed-M-complete boundary and the M-complete-M-open boundary. Indeed, as a problem gets closer to M-open, it seems that M-complete predictive methods begin to break down. Our comparisons rest on extensive simulations and real data examples.
国家哲学社会科学文献中心版权所有